Austria | Germany | France | Sweden | India | USA | China | Singapore
Force monitoring improves efficiency of Airbus’ Final Assembly Line
News | < 1 minute Reading Time |

Force monitoring improves efficiency of Airbus’ Final Assembly Line

In November 2016 the Airbus A350-1000 flew for the very first time. The A350-1000 is part of the A350 XWB family and is Airbus’ largest and most powerful twin-engined airliner ever. Airbus began the assembly of the A350-1000 in September, 2015, less than a year after the first delivery of the A350-900. For maximum flexibility, the existing A350 XWB Final Assembly Line (FAL) can be used for both A350-900 and A350-1000 models.

The major A350 XWB sections like fuselage, wings, engines and tail are built by Airbus’ European production locations in France, Germany, Spain and the UK. At the A350 XWB Final Assembly Line in Toulouse (France) the jetliner then comes together like a well-planned, high-tech puzzle. Fuselage section joining and wing/fuselage mating is done in gigantic assembly jigs. The assembly of these large, flexible components is a complex task. Positioning systems are used to accurately locate in space the aircraft sections to allow the best fit among them. With the aid of force sensors mounted on the end-effector of each positioner, the forces acting on the aircraft component can be monitored during the motion. This assures strain-free handling of the components, and thus, prevents them from damage. Gravitation causes geometric deformation in fuselage sections and wings. Before assembly the sections need to be untwisted to ensure unstressed joining.

The whole process is monitored by 300 force sensors connected to a Gantner Q.bloxx measurement system. A total of 150 x Q.bloxx A101 modules are used for primary monitoring tasks. Another 300 x Q.bloxx A102 modules are used for redundant monitoring and are integrated into the plant security system via Modbus TCP/IP.

The Q.bloxx system architecture, combined with its modular design, offers Airbus maximum flexibility. Each Q.bloxx module may be randomly installed close to the actual point of measurement and connected via high-speed serial interfaces. This not only reduces cabling complexity, but also allows a highly-synchronized measurement that is less prone to noise due to shorter sensor cable runs. The Q.bloxx “hot swap” feature allows for efficient service and maintenance of the monitoring system without the need to shut down power or re-configuring the monitoring system, minimizing downtime and increasing overall efficiency of the Final Assembly Line.

More articles

News

Mercedes GLC 350e plug-in hybrid – Photo Session in Schruns

Daimler used our company building in Schruns as the backdrop for the photo shoot for this year’s world premiere of the Mercedes-Benz GLC 350e plug-in hybrid.

Read more...
Tips & Trends

The 10 most important principles for effective acceleration measurement and vibration monitoring

In vibration monitoring and acceleration measurement, there are many variables to consider, and many opportunities to make mistakes. Sometimes it is nice to have a checklist that keeps you on the right track. Here are the 10 essentials for effective vibration monitoring and acceleration measurement

Read more...
Tips & Trends

6 Tips for Stress-free Strain Measurement during Fatigue Testing of Aircraft Structures

Strain is the single most important measurement during aircraft fatigue testing. The accuracy and precision of strain gauge measurements is of the greatest importance to exactly determine the durability and damage tolerance of a structure. The higher a structure is in the ‘pyramid of test’, the higher the test complexity, number of measurement channels, and data produced. On top of that the risk in terms of time delay and cost associated to a test program increases more than proportional with the increase in test complexity. Here are six tips to help you choose the right data acquisition system for your fatigue test:

Read more...
News

Innovation in Alpine Solar: Overcoming Winter Energy Challenges

Switzerland is investing in the untapped potential of Alpine photovoltaic (PV) generation and making strides toward a sustainable future. This blog explores the innovative Sedrun Solar project, a pioneering high-altitude PV initiative to fill the winter energy gap. Uncover how rigorous testing and insightful data collection, facilitated by Gantner Instruments, are paving the way for optimizing this renewable energy source.

Read more...
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.